3 research outputs found

    Entanglement scaling in critical two-dimensional fermionic and bosonic systems

    Full text link
    We relate the reduced density matrices of quadratic bosonic and fermionic models to their Green's function matrices in a unified way and calculate the scaling of bipartite entanglement of finite systems in an infinite universe exactly. For critical fermionic 2D systems at T=0, two regimes of scaling are identified: generically, we find a logarithmic correction to the area law with a prefactor dependence on the chemical potential that confirms earlier predictions based on the Widom conjecture. If, however, the Fermi surface of the critical system is zero-dimensional, we find an area law with a sublogarithmic correction. For a critical bosonic 2D array of coupled oscillators at T=0, our results show that entanglement follows the area law without corrections.Comment: 4 pages, 4 figure

    Correlations, spectral gap, and entanglement in harmonic quantum systems on generic lattices

    Full text link
    We investigate the relationship between the gap between the energy of the ground state and the first excited state and the decay of correlation functions in harmonic lattice systems. We prove that in gapped systems, the exponential decay of correlations follows for both the ground state and thermal states. Considering the converse direction, we show that an energy gap can follow from algebraic decay and always does for exponential decay. The underlying lattices are described as general graphs of not necessarily integer dimension, including translationally invariant instances of cubic lattices as special cases. Any local quadratic couplings in position and momentum coordinates are allowed for, leading to quasi-free (Gaussian) ground states. We make use of methods of deriving bounds to matrix functions of banded matrices corresponding to local interactions on general graphs. Finally, we give an explicit entanglement-area relationship in terms of the energy gap for arbitrary, not necessarily contiguous regions on lattices characterized by general graphs.Comment: 26 pages, LaTeX, published version (figure added

    Quantum Impurity Entanglement

    Full text link
    Entanglement in J_1-J_2, S=1/2 quantum spin chains with an impurity is studied using analytic methods as well as large scale numerical density matrix renormalization group methods. The entanglement is investigated in terms of the von Neumann entropy, S=-Tr rho_A log rho_A, for a sub-system A of size r of the chain. The impurity contribution to the uniform part of the entanglement entropy, S_{imp}, is defined and analyzed in detail in both the gapless, J_2 <= J_2^c, as well as the dimerized phase, J_2>J_2^c, of the model. This quantum impurity model is in the universality class of the single channel Kondo model and it is shown that in a quite universal way the presence of the impurity in the gapless phase, J_2 <= J_2^c, gives rise to a large length scale, xi_K, associated with the screening of the impurity, the size of the Kondo screening cloud. The universality of Kondo physics then implies scaling of the form S_{imp}(r/xi_K,r/R) for a system of size R. Numerical results are presented clearly demonstrating this scaling. At the critical point, J_2^c, an analytic Fermi liquid picture is developed and analytic results are obtained both at T=0 and T>0. In the dimerized phase an appealing picure of the entanglement is developed in terms of a thin soliton (TS) ansatz and the notions of impurity valence bonds (IVB) and single particle entanglement (SPE) are introduced. The TS-ansatz permits a variational calculation of the complete entanglement in the dimerized phase that appears to be exact in the thermodynamic limit at the Majumdar-Ghosh point, J_2=J_1/2, and surprisingly precise even close to the critical point J_2^c. In appendices the relation between the finite temperature entanglement entropy, S(T), and the thermal entropy, S_{th}(T), is discussed and and calculated at the MG-point using the TS-ansatz.Comment: 62 pages, 27 figures, JSTAT macro
    corecore